High-Voltage Aqueous Magnesium Ion Batteries

نویسندگان

  • Fei Wang
  • Xiulin Fan
  • Tao Gao
  • Wei Sun
  • Zhaohui Ma
  • Chongyin Yang
  • Fudong Han
  • Kang Xu
  • Chunsheng Wang
چکیده

Nonaqueous rechargeable magnesium (Mg) batteries suffer from the complicated and moisture-sensitive electrolyte chemistry. Besides electrolytes, the practicality of a Mg battery is also confined by the absence of high-performance electrode materials due to the intrinsically slow Mg2+ diffusion in the solids. In this work, we demonstrated a rechargeable aqueous magnesium ion battery (AMIB) concept of high energy density, fast kinetics, and reversibility. Using a superconcentration approach we expanded the electrochemical stability window of the aqueous electrolyte to 2.0 V. More importantly, two new Mg ion host materials, Li superconcentration approach we expanded the electrochemical stability window of the aqueous electrolyte to 2.0 V. More importantly, two new Mg ion host materials, Li3V2(PO4)3 and poly pyromellitic dianhydride, were developed and employed as cathode and anode electrodes, respectively. Based on comparisons of the aqueous and nonaqueous systems, the role of water is identified to be critical in the Mg ion mobility in the intercalation host but remaining little detrimental to its non-diffusion controlled process. Compared with the previously reported Mg ion cell delivers an unprecedented high power density of 6400 W kg ion cell delivers an unprecedented high power density of 6400 W kg while retaining 92% of the initial capacity after 6000 cycles, pushing the Mg ion cell to a brand new stage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic

  In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...

متن کامل

Aqueous Mg-Ion Battery Based on Polyimide Anode and Prussian Blue Cathode

The magnesium-metal battery, which consists of a cathode, a Mg-metal anode, and a nonaqueous electrolyte, is a safer and less expensive alternative to the popular Li-ion battery. However, the performance of Mg batteries is greatly limited by the low electrochemical oxidative stability of nonaqueous electrolytes, the slow Mg diffusion into the cathode, and the irreversibility of Mg striping and ...

متن کامل

Binder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries

Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...

متن کامل

Hybrid system for rechargeable magnesium battery with high energy density

One of the main challenges of electrical energy storage (EES) is the development of environmentally friendly battery systems with high safety and high energy density. Rechargeable Mg batteries have been long considered as one highly promising system due to the use of low cost and dendrite-free magnesium metal. The bottleneck for traditional Mg batteries is to achieve high energy density since t...

متن کامل

High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements

Rechargeable magnesium batteries are poised to be viable candidates for large-scale energy storage devices in smart grid communities and electric vehicles. However, the energy density of previously proposed rechargeable magnesium batteries is low, limited mainly by the cathode materials. Here, we present new design approaches for the cathode in order to realize a high-energy-density rechargeabl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2017